2,710 research outputs found

    A Novel FPGA Implementation of Hierarchical Temporal Memory Spatial Pooler

    Get PDF
    There is currently a strong focus across the technological landscape to create machines capable of performing complex, objective based tasks in a manner similar to, or superior to a human. Many of the methods being explored in the machine intelligence space require large sets of labeled data to first train, and then classify inputs. Hierarchical Temporal Memory (HTM) is a biologically inspired machine intelligence framework which aims to classify and interpret streaming unlabeled data, without supervision, and be able to detect anomalies in such data. In software HTM models, increasing the number of “columns” or processing elements to the levels required to make meaningful predictions in complex data can be prohibitive to analyzing in real time. There exists a need to improve the throughput of such systems. HTMs require large amounts of data available to be accessed randomly, and then processed independently. FPGAs provide a reconfigurable, and easily scalable platform ideal for these types of operations. One of the two main components of the HTM architecture is the “spatial pooler”. This thesis explores a novel hardware implementation of an HTM spatial pooler, with a boosting algorithm to increase homeostasis, and a novel classification algorithm to interpret input data in real time. This implementation shows a significant speedup in data processing, and provides a framework to scale the implementation based on the available hardware resources of the FPGA

    Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism Used in the Testing and Calibration of the Integrated Science Instrument Module (ISIM) on the James Webb Space Telescope (JWST)

    Get PDF
    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion

    Ultra-low-cost and ultra-low-power, miniature acoustic modems using multipath tolerant spread-spectrum techniques

    Get PDF
    To enable long-term, large-scale, dense underwater sensor networks or Internet of Underwater Things (IoUT) this research investigates new novel waveforms and experimental prototypes for robust communications on ultra-low-cost and ultra-low-power, miniature acoustic modems. Spread-spectrum M-ary orthogonal signalling (MOS) is used with symbols constructed from subsequences of long pseudorandom codes. This decorrelates multipath signals, even when the time-spread spans many symbols, so they present as random noise. A highly cost-engineered and miniaturised prototype acoustic modem implementation was created, for the 24 kHz–32 kHz band, with low receive power consumption (12.5 mW) and transmit power of 3 km in lakes and >2 km in the sea including severe multipath. In lake testing of a 7-node, multi-hop, sensor network with TDA-MAC protocol, packet delivery was near 100% for all nodes. Trials of acoustic sensor nodes in the North Sea achieved 99.5% data delivery over a 3-month period and a wide range of sea conditions. Modulation and hardware have proven reliable in a variety of underwater environments. Competitive range and throughput with low cost and power are attractive for large-scale and long-term battery-operated networks. This research has delivered a viable and affordable communication technology for future IoUT applications

    Agri-Environmental Policy at the Crossroads: Guideposts on a Changing Landscape

    Get PDF
    Agri-environmental policy is at a crossroads. Over the past 20 years, a wide range of policies addressing the environmental implications of agricultural production have been implemented at the Federal level. Those policies have played an important role in reducing soil erosion, protecting and restoring wetlands, and creating wildlife habitat. However, emerging agri-environmental issues, evolution of farm income support policies, and limits imposed by trade agreements may point toward a rethinking of agri-environmental policy. This report identifies the types of policy tools available and the design features that have improved the effectiveness of current programs. It provides an indepth analysis of one policy tool that may be an important component of a future policy package-agri-environmental payments. The analysis focuses on issues and tradeoffs that policymakers would face in designing a program of agri-environmental payments.conservation programs, environmental policy, agricultural policy, policy instruments, agricultural program design, soil erosion, nitrogen runoff, Environmental Economics and Policy,

    Polymorphisms in the SOCS7 gene and glucose homeostasis traits

    Get PDF
    BACKGROUND: SOCS7 is a member of the suppressor of cytokine signaling family of proteins and is expressed in skeletal muscle and islets. SOCS7 deficient mice develop islet hyperplasia in the setting of increased insulin sensitivity and normal glucose tolerance. The objective of this study was to determine if variants in SOCS7 play a role in variation of glucose and insulin levels and the development of type 2 diabetes (T2DM). RESULTS: Five SOCS7 tagging SNPs were genotyped in diabetic and nondiabetic Old Order Amish. A case–control study was performed in T2DM (n = 145) and normal glucose tolerant (n = 358) subjects. Nominal associations were observed with T2DM and the minor alleles for rs8068600 (P = 0.01) and rs8074124 (P = 0.04); however, only rs8068600 remained significant after Bonferroni adjustment for multiple comparisons (P = 0.01). Among nondiabetic Amish (n = 765), no significant associations with glucose or insulin traits including fasting or 2 hour glucose and insulin from the oral glucose tolerance test, insulin or glucose area under the curve, Matsuda Index or HOMA-IR were found for any of the SNPs. CONCLUSION: In conclusion, genetic variants in the SOCS7 gene do not impact variation in glucose homeostasis traits and only minimally impact risk of T2DM in the Old Order Amish. Our study was not able to address whether rare variants that potentially impact gene function might influence T2DM risk

    Software for Planning Scientific Activities on Mars

    Get PDF
    Mixed-Initiative Activity Plan Generator (MAPGEN) is a ground-based computer program for planning and scheduling the scientific activities of instrumented exploratory robotic vehicles, within the limitations of available resources onboard the vehicle. MAPGEN is a combination of two prior software systems: (1) an activity-planning program, APGEN, developed at NASA s Jet Propulsion Laboratory and (2) the Europa planner/scheduler from NASA Ames Research Center. MAPGEN performs all of the following functions: Automatic generation of plans and schedules for scientific and engineering activities; Testing of hypotheses (or what-if analyses of various scenarios); Editing of plans; Computation and analysis of resources; and Enforcement and maintenance of constraints, including resolution of temporal and resource conflicts among planned activities. MAPGEN can be used in either of two modes: one in which the planner/scheduler is turned off and only the basic APGEN functionality is utilized, or one in which both component programs are used to obtain the full planning, scheduling, and constraint-maintenance functionality

    Ribp, a Novel Rlk/Txk- and Itk-Binding Adaptor Protein That Regulates T Cell Activation

    Get PDF
    A novel T cell–specific adaptor protein, RIBP, was identified based on its ability to bind Rlk/Txk in a yeast two-hybrid screen of a mouse T cell lymphoma library. RIBP was also found to interact with a related member of the Tec family of tyrosine kinases, Itk. Expression of RIBP is restricted to T and natural killer cells and is upregulated substantially after T cell activation. RIBP-disrupted knockout mice displayed apparently normal T cell development. However, proliferation of RIBP-deficient T cells in response to T cell receptor (TCR)-mediated activation was significantly impaired. Furthermore, these activated T cells were defective in the production of interleukin (IL)-2 and interferon γ, but not IL-4. These data suggest that RIBP plays an important role in TCR-mediated signal transduction pathways and that its binding to Itk and Rlk/Txk may regulate T cell differentiation

    Design and Lessons Learned on the Development of a Cryogenic Pupil Select Mechanism (PSM)

    Get PDF
    Calibration and testing of the instruments on the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST) is being performed by the use of a cryogenic, full-field, optical simulator that was constructed for this purpose. The Pupil Select Mechanism (PSM) assembly is one of several mechanisms and optical elements that compose the Optical Telescope Element SIMulator, or OSIM. The PSM allows for several optical elements to be inserted into the optical plane of OSIM, introducing a variety of aberrations, distortions, obscurations, and other calibration states into the pupil plane. The following discussion focuses on the details of the design evolution, analysis, build, and test of this mechanism along with the challenges associated with creating a sub arc-minute positioning mechanism operating in an extreme cryogenic environment. In addition, difficult challenges in the control system design will be discussed including the incorporation of closed-loop feedback control into a system that was designed to operate in an open-loop fashion
    corecore